Message boards : Science : Complete MOLS systems
Message board moderation
Previous · 1 · 2 · 3 · 4 · 5 . . . 6 · Next
Author | Message |
---|---|
Send message Joined: 22 Oct 17 Posts: 3083 Credit: 0 RAC: 0 |
Задаю команду sage: designs.mutually_orthogonal_latin_squares(31,32) Получаю [32 x 32 dense matrix over Integer Ring, 32 x 32 dense matrix over Integer Ring, 32 x 32 dense matrix over Integer Ring, 32 x 32 dense matrix over Integer Ring, 32 x 32 dense matrix over Integer Ring, 32 x 32 dense matrix over Integer Ring, 32 x 32 dense matrix over Integer Ring, 32 x 32 dense matrix over Integer Ring, 32 x 32 dense matrix over Integer Ring, 32 x 32 dense matrix over Integer Ring, 32 x 32 dense matrix over Integer Ring, 32 x 32 dense matrix over Integer Ring, 32 x 32 dense matrix over Integer Ring, 32 x 32 dense matrix over Integer Ring, 32 x 32 dense matrix over Integer Ring, 32 x 32 dense matrix over Integer Ring, 32 x 32 dense matrix over Integer Ring, 32 x 32 dense matrix over Integer Ring, 32 x 32 dense matrix over Integer Ring, 32 x 32 dense matrix over Integer Ring, 32 x 32 dense matrix over Integer Ring, 32 x 32 dense matrix over Integer Ring, 32 x 32 dense matrix over Integer Ring, 32 x 32 dense matrix over Integer Ring, 32 x 32 dense matrix over Integer Ring, 32 x 32 dense matrix over Integer Ring, 32 x 32 dense matrix over Integer Ring, 32 x 32 dense matrix over Integer Ring, 32 x 32 dense matrix over Integer Ring, 32 x 32 dense matrix over Integer Ring, 32 x 32 dense matrix over Integer Ring] Ðто интереÑно! Ðе знаю, как ÑоÑтавлÑÑ‚ÑŒ полную ÑиÑтему MOLS 32-го порÑдка. Какое тут раÑÑматриваетÑÑ ÐºÐ¾Ð»ÑŒÑ†Ð¾? |
Send message Joined: 22 Oct 17 Posts: 3083 Credit: 0 RAC: 0 |
Задаю команду sage: designs.mutually_orthogonal_latin_squares(5,35) Получаю [35 x 35 dense matrix over Integer Ring, 35 x 35 dense matrix over Integer Ring, 35 x 35 dense matrix over Integer Ring, 35 x 35 dense matrix over Integer Ring, 35 x 35 dense matrix over Integer Ring] Тоже веÑьма интереÑно! Затем задаю команду sage: designs.mutually_orthogonal_latin_squares(6,35) Получаю --------------------------------------------------------------------------- NotImplementedError Traceback (most recent call last) <ipython-input-1-5bb645162bdc> in <module> ----> 1 designs.mutually_orthogonal_latin_squares(Integer(6),Integer(35)) 2 3 /home/sc_serv/sage/local/lib/python3.8/site-packages/sage/misc/lazy_import.pyx in sage.misc.lazy_import.LazyImport.__call__ (build/cythonized/sage/misc/lazy_import.c:4027)() 359 True 360 """ --> 361 return self.get_object()(*args, **kwds) 362 363 def __repr__(self): /home/sc_serv/sage/local/lib/python3.8/site-packages/sage/combinat/designs/latin_squares.py in mutually_orthogonal_latin_squares(k, n, partitions, check) 391 392 else: --> 393 raise NotImplementedError("I don't know how to build {} MOLS of order {}".format(k, n)) 394 395 if check: NotImplementedError: I don't know how to build 6 MOLS of order 35 То еÑÑ‚ÑŒ, группа MOLS 35-го порÑдка, ÑоÑтоÑÑ‰Ð°Ñ Ð¸Ð· 5 ЛК, извеÑтна и получаетÑÑ Ð¸Ð· какого-то кольца (из какого?) Рвот группа MOLS 35-го порÑдка, ÑоÑтоÑÑ‰Ð°Ñ Ð¸Ð· 6 ЛК, неизвеÑтна, как Ñ Ð¿Ð¾Ð½Ð¸Ð¼Ð°ÑŽ. |
Send message Joined: 22 Oct 17 Posts: 3083 Credit: 0 RAC: 0 |
Ещё интереÑнее! Задаю команду sage: designs.mutually_orthogonal_latin_squares(5,12) Получаю [ 0 1 2 3 4 5 6 7 8 9 10 11] [ 1 0 3 2 5 4 7 6 9 8 11 10] [ 2 3 0 1 6 7 4 5 10 11 8 9] [ 3 2 1 0 7 6 5 4 11 10 9 8] [ 8 9 10 11 0 1 2 3 4 5 6 7] [ 9 8 11 10 1 0 3 2 5 4 7 6] [10 11 8 9 2 3 0 1 6 7 4 5] [11 10 9 8 3 2 1 0 7 6 5 4] [ 4 5 6 7 8 9 10 11 0 1 2 3] [ 5 4 7 6 9 8 11 10 1 0 3 2] [ 6 7 4 5 10 11 8 9 2 3 0 1] [ 7 6 5 4 11 10 9 8 3 2 1 0], [ 0 1 2 3 4 5 6 7 8 9 10 11] [ 6 7 4 5 10 11 8 9 2 3 0 1] [ 4 5 6 7 8 9 10 11 0 1 2 3] [ 2 3 0 1 6 7 4 5 10 11 8 9] [10 11 8 9 2 3 0 1 6 7 4 5] [ 5 4 7 6 9 8 11 10 1 0 3 2] [ 7 6 5 4 11 10 9 8 3 2 1 0] [ 8 9 10 11 0 1 2 3 4 5 6 7] [ 9 8 11 10 1 0 3 2 5 4 7 6] [ 3 2 1 0 7 6 5 4 11 10 9 8] [ 1 0 3 2 5 4 7 6 9 8 11 10] [11 10 9 8 3 2 1 0 7 6 5 4], [ 0 1 2 3 4 5 6 7 8 9 10 11] [ 3 2 1 0 7 6 5 4 11 10 9 8] [11 10 9 8 3 2 1 0 7 6 5 4] [ 6 7 4 5 10 11 8 9 2 3 0 1] [ 4 5 6 7 8 9 10 11 0 1 2 3] [ 7 6 5 4 11 10 9 8 3 2 1 0] [ 9 8 11 10 1 0 3 2 5 4 7 6] [ 1 0 3 2 5 4 7 6 9 8 11 10] [ 5 4 7 6 9 8 11 10 1 0 3 2] [ 2 3 0 1 6 7 4 5 10 11 8 9] [10 11 8 9 2 3 0 1 6 7 4 5] [ 8 9 10 11 0 1 2 3 4 5 6 7], [ 0 1 2 3 4 5 6 7 8 9 10 11] [ 9 8 11 10 1 0 3 2 5 4 7 6] [ 8 9 10 11 0 1 2 3 4 5 6 7] [ 1 0 3 2 5 4 7 6 9 8 11 10] [ 5 4 7 6 9 8 11 10 1 0 3 2] [ 3 2 1 0 7 6 5 4 11 10 9 8] [ 2 3 0 1 6 7 4 5 10 11 8 9] [ 4 5 6 7 8 9 10 11 0 1 2 3] [11 10 9 8 3 2 1 0 7 6 5 4] [ 6 7 4 5 10 11 8 9 2 3 0 1] [ 7 6 5 4 11 10 9 8 3 2 1 0] [10 11 8 9 2 3 0 1 6 7 4 5], [ 0 1 2 3 4 5 6 7 8 9 10 11] [10 11 8 9 2 3 0 1 6 7 4 5] [ 5 4 7 6 9 8 11 10 1 0 3 2] [ 7 6 5 4 11 10 9 8 3 2 1 0] [ 9 8 11 10 1 0 3 2 5 4 7 6] [11 10 9 8 3 2 1 0 7 6 5 4] [ 3 2 1 0 7 6 5 4 11 10 9 8] [ 6 7 4 5 10 11 8 9 2 3 0 1] [ 2 3 0 1 6 7 4 5 10 11 8 9] [ 1 0 3 2 5 4 7 6 9 8 11 10] [ 8 9 10 11 0 1 2 3 4 5 6 7] [ 4 5 6 7 8 9 10 11 0 1 2 3] Группа MOLS 12-го порÑдка, ÑоÑтоÑÑ‰Ð°Ñ Ð¸Ð· 5 ЛК! |
Send message Joined: 22 Oct 17 Posts: 3083 Credit: 0 RAC: 0 |
Задаю команду sage: designs.mutually_orthogonal_latin_squares(6,12) Программа пишет NotImplementedError: I don't know how to build 6 MOLS of order 12 Можно и дальше ÑкÑпериментировать. Очень интереÑно! 11 лет назад Ñ Ð² Ñвоих ÑтатьÑÑ… опиÑывала группы MOLS разных порÑдков, какие мне тогда удалоÑÑŒ найти в ÑтатьÑÑ…. Ðо не вÑе удалоÑÑŒ найти. Может быть, программа SageMath вÑе их знает. Ðто здорово! |
Send message Joined: 22 Oct 17 Posts: 3083 Credit: 0 RAC: 0 |
Группу MOLS 15-го порÑдка из 4-Ñ… ЛК программа знает! Задаю команду sage: designs.mutually_orthogonal_latin_squares(4,15) Получаю [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 0] [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14] [14 0 1 2 3 4 5 6 7 8 9 10 11 12 13] [13 14 0 1 2 3 4 5 6 7 8 9 10 11 12] [12 13 14 0 1 2 3 4 5 6 7 8 9 10 11] [11 12 13 14 0 1 2 3 4 5 6 7 8 9 10] [10 11 12 13 14 0 1 2 3 4 5 6 7 8 9] [ 9 10 11 12 13 14 0 1 2 3 4 5 6 7 8] [ 8 9 10 11 12 13 14 0 1 2 3 4 5 6 7] [ 7 8 9 10 11 12 13 14 0 1 2 3 4 5 6] [ 6 7 8 9 10 11 12 13 14 0 1 2 3 4 5] [ 5 6 7 8 9 10 11 12 13 14 0 1 2 3 4] [ 4 5 6 7 8 9 10 11 12 13 14 0 1 2 3] [ 3 4 5 6 7 8 9 10 11 12 13 14 0 1 2] [ 2 3 4 5 6 7 8 9 10 11 12 13 14 0 1], [ 1 3 6 8 10 13 5 2 0 12 4 7 9 11 14] [ 0 2 4 7 9 11 14 6 3 1 13 5 8 10 12] [13 1 3 5 8 10 12 0 7 4 2 14 6 9 11] [12 14 2 4 6 9 11 13 1 8 5 3 0 7 10] [11 13 0 3 5 7 10 12 14 2 9 6 4 1 8] [ 9 12 14 1 4 6 8 11 13 0 3 10 7 5 2] [ 3 10 13 0 2 5 7 9 12 14 1 4 11 8 6] [ 7 4 11 14 1 3 6 8 10 13 0 2 5 12 9] [10 8 5 12 0 2 4 7 9 11 14 1 3 6 13] [14 11 9 6 13 1 3 5 8 10 12 0 2 4 7] [ 8 0 12 10 7 14 2 4 6 9 11 13 1 3 5] [ 6 9 1 13 11 8 0 3 5 7 10 12 14 2 4] [ 5 7 10 2 14 12 9 1 4 6 8 11 13 0 3] [ 4 6 8 11 3 0 13 10 2 5 7 9 12 14 1] [ 2 5 7 9 12 4 1 14 11 3 6 8 10 13 0], [ 1 7 4 0 11 8 14 5 12 3 9 6 2 13 10] [11 2 8 5 1 12 9 0 6 13 4 10 7 3 14] [ 0 12 3 9 6 2 13 10 1 7 14 5 11 8 4] [ 5 1 13 4 10 7 3 14 11 2 8 0 6 12 9] [10 6 2 14 5 11 8 4 0 12 3 9 1 7 13] [14 11 7 3 0 6 12 9 5 1 13 4 10 2 8] [ 9 0 12 8 4 1 7 13 10 6 2 14 5 11 3] [ 4 10 1 13 9 5 2 8 14 11 7 3 0 6 12] [13 5 11 2 14 10 6 3 9 0 12 8 4 1 7] [ 8 14 6 12 3 0 11 7 4 10 1 13 9 5 2] [ 3 9 0 7 13 4 1 12 8 5 11 2 14 10 6] [ 7 4 10 1 8 14 5 2 13 9 6 12 3 0 11] [12 8 5 11 2 9 0 6 3 14 10 7 13 4 1] [ 2 13 9 6 12 3 10 1 7 4 0 11 8 14 5] [ 6 3 14 10 7 13 4 11 2 8 5 1 12 9 0], [ 1 11 7 2 12 3 8 13 4 9 14 5 0 10 6] [ 7 2 12 8 3 13 4 9 14 5 10 0 6 1 11] [12 8 3 13 9 4 14 5 10 0 6 11 1 7 2] [ 3 13 9 4 14 10 5 0 6 11 1 7 12 2 8] [ 9 4 14 10 5 0 11 6 1 7 12 2 8 13 3] [ 4 10 5 0 11 6 1 12 7 2 8 13 3 9 14] [ 0 5 11 6 1 12 7 2 13 8 3 9 14 4 10] [11 1 6 12 7 2 13 8 3 14 9 4 10 0 5] [ 6 12 2 7 13 8 3 14 9 4 0 10 5 11 1] [ 2 7 13 3 8 14 9 4 0 10 5 1 11 6 12] [13 3 8 14 4 9 0 10 5 1 11 6 2 12 7] [ 8 14 4 9 0 5 10 1 11 6 2 12 7 3 13] [14 9 0 5 10 1 6 11 2 12 7 3 13 8 4] [ 5 0 10 1 6 11 2 7 12 3 13 8 4 14 9] [10 6 1 11 2 7 12 3 8 13 4 14 9 5 0] Отлично! КÑтати, в моей Ñтатье была поÑтроена Ð´Ñ€ÑƒÐ³Ð°Ñ Ð³Ñ€ÑƒÐ¿Ð¿Ð° MOLS 15-го порÑдка, ÑоÑтоÑÑ‰Ð°Ñ Ð¸Ð· четырёх ЛК (по алгоритму, который мне удалоÑÑŒ найти в какой-то Ñтатье). Из Ñтой группы MOLS Ñ Ð¿Ð¾Ð»ÑƒÑ‡Ð¸Ð»Ð° неÑложным преобразованием группу MODLS 15-го порÑдка, ÑоÑтоÑщую из четырёх ДЛК. Смотрите тему https://boinc.multi-pool.info/latinsquares/forum_thread.php?id=115 |
Send message Joined: 22 Oct 17 Posts: 3083 Credit: 0 RAC: 0 |
Группу MOLS 18-го порÑдка из трёх ЛК программа тоже знает! Задаю команду sage: designs.mutually_orthogonal_latin_squares(3,18) Получаю [ 1 6 4 9 7 10 12 14 3 2 13 0 17 8 11 15 5 16] [ 4 2 7 5 1 8 11 13 15 17 3 14 10 0 9 12 16 6] [16 5 3 8 6 2 9 12 14 7 0 4 15 11 10 1 13 17] [15 17 6 4 9 7 3 1 13 0 8 10 5 16 12 11 2 14] [14 16 0 7 5 1 8 4 2 15 10 9 11 6 17 13 12 3] [ 3 15 17 10 8 6 2 9 5 4 16 11 1 12 7 0 14 13] [ 6 4 16 0 11 9 7 3 1 14 5 17 12 2 13 8 10 15] [ 2 7 5 17 10 12 1 8 4 16 15 6 0 13 3 14 9 11] [ 5 3 8 6 0 11 13 2 9 12 17 16 7 10 14 4 15 1] [11 13 1 16 2 14 6 15 0 10 12 7 3 17 8 5 4 9] [10 12 14 2 17 3 15 7 16 1 11 13 8 4 0 9 6 5] [17 11 13 15 3 0 4 16 8 6 2 12 14 9 5 10 1 7] [ 9 0 12 14 16 4 10 5 17 8 7 3 13 15 1 6 11 2] [ 0 1 10 13 15 17 5 11 6 3 9 8 4 14 16 2 7 12] [ 7 10 2 11 14 16 0 6 12 13 4 1 9 5 15 17 3 8] [13 8 11 3 12 15 17 10 7 9 14 5 2 1 6 16 0 4] [ 8 14 9 12 4 13 16 0 11 5 1 15 6 3 2 7 17 10] [12 9 15 1 13 5 14 17 10 11 6 2 16 7 4 3 8 0], [ 1 4 16 15 14 3 6 2 5 11 10 17 9 0 7 13 8 12] [ 6 2 5 17 16 15 4 7 3 13 12 11 0 1 10 8 14 9] [ 4 7 3 6 0 17 16 5 8 1 14 13 12 10 2 11 9 15] [ 9 5 8 4 7 10 0 17 6 16 2 15 14 13 11 3 12 1] [ 7 1 6 9 5 8 11 10 0 2 17 3 16 15 14 12 4 13] [10 8 2 7 1 6 9 12 11 14 3 0 4 17 16 15 13 5] [12 11 9 3 8 2 7 1 13 6 15 4 10 5 0 17 16 14] [14 13 12 1 4 9 3 8 2 15 7 16 5 11 6 10 0 17] [ 3 15 14 13 2 5 1 4 9 0 16 8 17 6 12 7 11 10] [ 2 17 7 0 15 4 14 16 12 10 1 6 8 3 13 9 5 11] [13 3 0 8 10 16 5 15 17 12 11 2 7 9 4 14 1 6] [ 0 14 4 10 9 11 17 6 16 7 13 12 3 8 1 5 15 2] [17 10 15 5 11 1 12 0 7 3 8 14 13 4 9 2 6 16] [ 8 0 11 16 6 12 2 13 10 17 4 9 15 14 5 1 3 7] [11 9 10 12 17 7 13 3 14 8 0 5 1 16 15 6 2 4] [15 12 1 11 13 0 8 14 4 5 9 10 6 2 17 16 7 3] [ 5 16 13 2 12 14 10 9 15 4 6 1 11 7 3 0 17 8] [16 6 17 14 3 13 15 11 1 9 5 7 2 12 8 4 10 0], [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 0] [17 1 10 0 12 5 6 3 4 7 16 9 8 13 14 15 2 11] [12 11 1 16 7 8 5 6 0 9 3 2 17 4 13 14 15 10] [ 7 8 9 1 2 3 4 5 6 16 17 0 10 11 12 13 14 15] [ 6 3 4 17 1 10 0 12 5 15 2 11 7 16 9 8 13 14] [ 5 6 0 12 11 1 16 7 8 14 15 10 9 3 2 17 4 13] [ 4 5 6 7 8 9 1 2 3 13 14 15 16 17 0 10 11 12] [ 0 12 5 6 3 4 17 1 10 8 13 14 15 2 11 7 16 9] [16 7 8 5 6 0 12 11 1 17 4 13 14 15 10 9 3 2] [11 4 16 9 15 14 13 0 2 1 10 8 3 5 6 12 7 17] [10 9 12 2 17 15 14 13 7 11 1 16 4 0 5 6 8 3] [ 3 16 17 8 10 11 15 14 13 0 9 1 2 12 7 5 6 4] [13 0 2 11 4 16 9 15 14 12 7 17 1 10 8 3 5 6] [14 13 7 10 9 12 2 17 15 6 8 3 11 1 16 4 0 5] [15 14 13 3 16 17 8 10 11 5 6 4 0 9 1 2 12 7] [ 9 15 14 13 0 2 11 4 16 3 5 6 12 7 17 1 10 8] [ 2 17 15 14 13 7 10 9 12 4 0 5 6 8 3 11 1 16] [ 8 10 11 15 14 13 3 16 17 2 12 7 5 6 4 0 9 1] Ð’ Ñвоё Ð²Ñ€ÐµÐ¼Ñ Ñ Ð¿Ð¾Ð»ÑƒÑ‡Ð¸Ð»Ð° из извеÑтной группы MOLS 18-го порÑдка ортогональную пару ДЛК 18-го порÑдка; третий ЛК ÑиÑтемы в ДЛК не превратилÑÑ. Может быть, из показанной ÑÐµÐ¹Ñ‡Ð°Ñ Ð³Ñ€ÑƒÐ¿Ð¿Ñ‹ MOLS 18-го порÑдка можно получить группу MODLS из трёх ДЛК? |
Send message Joined: 22 Oct 17 Posts: 3083 Credit: 0 RAC: 0 |
Программа знает и группу MOLS 18-го порÑдка из четырёх ЛК! Задаю команду sage: designs.mutually_orthogonal_latin_squares(4,18) Получаю [ 0 3 6 16 10 13 1 4 7 11 14 17 15 9 12 2 5 8] [ 7 1 4 14 17 11 8 2 5 15 9 12 13 16 10 6 0 3] [ 5 8 2 9 12 15 3 6 0 13 16 10 11 14 17 4 7 1] [ 4 7 1 3 6 0 10 13 16 5 8 2 14 17 11 9 12 15] [ 2 5 8 1 4 7 17 11 14 0 3 6 9 12 15 16 10 13] [ 6 0 3 8 2 5 12 15 9 7 1 4 16 10 13 14 17 11] [13 16 10 7 1 4 6 0 3 12 15 9 8 2 5 17 11 14] [11 14 17 5 8 2 4 7 1 10 13 16 3 6 0 12 15 9] [15 9 12 0 3 6 2 5 8 17 11 14 1 4 7 10 13 16] [14 17 11 6 0 3 9 12 15 8 2 5 10 13 16 1 4 7] [ 9 12 15 4 7 1 16 10 13 3 6 0 17 11 14 8 2 5] [16 10 13 2 5 8 14 17 11 1 4 7 12 15 9 3 6 0] [12 15 9 17 11 14 0 3 6 4 7 1 2 5 8 13 16 10] [10 13 16 12 15 9 7 1 4 2 5 8 6 0 3 11 14 17] [17 11 14 10 13 16 5 8 2 6 0 3 4 7 1 15 9 12] [ 3 6 0 15 9 12 11 14 17 16 10 13 7 1 4 5 8 2] [ 1 4 7 13 16 10 15 9 12 14 17 11 5 8 2 0 3 6] [ 8 2 5 11 14 17 13 16 10 9 12 15 0 3 6 7 1 4], [ 0 7 5 12 10 17 16 14 9 2 6 4 13 11 15 1 8 3] [ 3 1 8 15 13 11 10 17 12 5 0 7 16 14 9 4 2 6] [ 6 4 2 9 16 14 13 11 15 8 3 1 10 17 12 7 5 0] [10 17 12 3 1 8 15 13 11 4 2 6 5 0 7 16 14 9] [13 11 15 6 4 2 9 16 14 7 5 0 8 3 1 10 17 12] [16 14 9 0 7 5 12 10 17 1 8 3 2 6 4 13 11 15] [ 9 16 14 13 11 15 6 4 2 10 17 12 7 5 0 8 3 1] [12 10 17 16 14 9 0 7 5 13 11 15 1 8 3 2 6 4] [15 13 11 10 17 12 3 1 8 16 14 9 4 2 6 5 0 7] [11 15 13 7 5 0 2 6 4 9 16 14 3 1 8 17 12 10] [14 9 16 1 8 3 5 0 7 12 10 17 6 4 2 11 15 13] [17 12 10 4 2 6 8 3 1 15 13 11 0 7 5 14 9 16] [ 5 0 7 14 9 16 1 8 3 11 15 13 12 10 17 6 4 2] [ 8 3 1 17 12 10 4 2 6 14 9 16 15 13 11 0 7 5] [ 2 6 4 11 15 13 7 5 0 17 12 10 9 16 14 3 1 8] [ 4 2 6 8 3 1 17 12 10 0 7 5 14 9 16 15 13 11] [ 7 5 0 2 6 4 11 15 13 3 1 8 17 12 10 9 16 14] [ 1 8 3 5 0 7 14 9 16 6 4 2 11 15 13 12 10 17], [ 0 8 4 14 10 15 11 16 12 9 17 13 7 3 2 5 1 6] [ 5 1 6 16 12 11 13 9 17 14 10 15 0 8 4 7 3 2] [ 7 3 2 9 17 13 15 14 10 16 12 11 5 1 6 0 8 4] [14 10 15 3 2 7 17 13 9 8 4 0 12 11 16 1 6 5] [16 12 11 8 4 0 10 15 14 1 6 5 17 13 9 3 2 7] [ 9 17 13 1 6 5 12 11 16 3 2 7 10 15 14 8 4 0] [11 16 12 17 13 9 6 5 1 4 0 8 2 7 3 15 14 10] [13 9 17 10 15 14 2 7 3 6 5 1 4 0 8 11 16 12] [15 14 10 12 11 16 4 0 8 2 7 3 6 5 1 13 9 17] [ 6 5 1 11 16 12 7 3 2 0 8 4 9 17 13 14 10 15] [ 2 7 3 13 9 17 0 8 4 5 1 6 14 10 15 16 12 11] [ 4 0 8 15 14 10 5 1 6 7 3 2 16 12 11 9 17 13] [ 1 6 5 0 8 4 14 10 15 17 13 9 3 2 7 12 11 16] [ 3 2 7 5 1 6 16 12 11 10 15 14 8 4 0 17 13 9] [ 8 4 0 7 3 2 9 17 13 12 11 16 1 6 5 10 15 14] [17 13 9 4 0 8 3 2 7 15 14 10 11 16 12 6 5 1] [10 15 14 6 5 1 8 4 0 11 16 12 13 9 17 2 7 3] [12 11 16 2 7 3 1 6 5 13 9 17 15 14 10 4 0 8], [ 0 5 7 4 6 2 16 9 14 3 8 1 17 10 12 13 15 11] [ 8 1 3 0 5 7 12 17 10 2 4 6 13 15 11 9 14 16] [ 4 6 2 8 1 3 11 13 15 7 0 5 9 14 16 17 10 12] [10 12 17 3 8 1 7 0 5 16 9 14 6 2 4 11 13 15] [15 11 13 2 4 6 3 8 1 12 17 10 5 7 0 16 9 14] [14 16 9 7 0 5 2 4 6 11 13 15 1 3 8 12 17 10] [ 1 3 8 13 15 11 6 2 4 14 16 9 10 12 17 0 5 7] [ 6 2 4 9 14 16 5 7 0 10 12 17 15 11 13 8 1 3] [ 5 7 0 17 10 12 1 3 8 15 11 13 14 16 9 4 6 2] [ 9 14 16 15 11 13 0 5 7 4 6 2 12 17 10 3 8 1] [17 10 12 14 16 9 8 1 3 0 5 7 11 13 15 2 4 6] [13 15 11 10 12 17 4 6 2 8 1 3 16 9 14 7 0 5] [ 3 8 1 12 17 10 9 14 16 6 2 4 7 0 5 15 11 13] [ 2 4 6 11 13 15 17 10 12 5 7 0 3 8 1 14 16 9] [ 7 0 5 16 9 14 13 15 11 1 3 8 2 4 6 10 12 17] [12 17 10 6 2 4 15 11 13 9 14 16 0 5 7 1 3 8] [11 13 15 5 7 0 14 16 9 17 10 12 8 1 3 6 2 4] [16 9 14 1 3 8 10 12 17 13 15 11 4 6 2 5 7 0] И из пÑти ЛК тоже знает группу MOLS 18-го порÑдка! Задаю команду sage: designs.mutually_orthogonal_latin_squares(5,18) Получаю [ 0 3 6 16 10 13 1 4 7 11 14 17 15 9 12 2 5 8] [ 7 1 4 14 17 11 8 2 5 15 9 12 13 16 10 6 0 3] [ 5 8 2 9 12 15 3 6 0 13 16 10 11 14 17 4 7 1] [ 4 7 1 3 6 0 10 13 16 5 8 2 14 17 11 9 12 15] [ 2 5 8 1 4 7 17 11 14 0 3 6 9 12 15 16 10 13] [ 6 0 3 8 2 5 12 15 9 7 1 4 16 10 13 14 17 11] [13 16 10 7 1 4 6 0 3 12 15 9 8 2 5 17 11 14] [11 14 17 5 8 2 4 7 1 10 13 16 3 6 0 12 15 9] [15 9 12 0 3 6 2 5 8 17 11 14 1 4 7 10 13 16] [14 17 11 6 0 3 9 12 15 8 2 5 10 13 16 1 4 7] [ 9 12 15 4 7 1 16 10 13 3 6 0 17 11 14 8 2 5] [16 10 13 2 5 8 14 17 11 1 4 7 12 15 9 3 6 0] [12 15 9 17 11 14 0 3 6 4 7 1 2 5 8 13 16 10] [10 13 16 12 15 9 7 1 4 2 5 8 6 0 3 11 14 17] [17 11 14 10 13 16 5 8 2 6 0 3 4 7 1 15 9 12] [ 3 6 0 15 9 12 11 14 17 16 10 13 7 1 4 5 8 2] [ 1 4 7 13 16 10 15 9 12 14 17 11 5 8 2 0 3 6] [ 8 2 5 11 14 17 13 16 10 9 12 15 0 3 6 7 1 4], [ 0 7 5 12 10 17 16 14 9 2 6 4 13 11 15 1 8 3] [ 3 1 8 15 13 11 10 17 12 5 0 7 16 14 9 4 2 6] [ 6 4 2 9 16 14 13 11 15 8 3 1 10 17 12 7 5 0] [10 17 12 3 1 8 15 13 11 4 2 6 5 0 7 16 14 9] [13 11 15 6 4 2 9 16 14 7 5 0 8 3 1 10 17 12] [16 14 9 0 7 5 12 10 17 1 8 3 2 6 4 13 11 15] [ 9 16 14 13 11 15 6 4 2 10 17 12 7 5 0 8 3 1] [12 10 17 16 14 9 0 7 5 13 11 15 1 8 3 2 6 4] [15 13 11 10 17 12 3 1 8 16 14 9 4 2 6 5 0 7] [11 15 13 7 5 0 2 6 4 9 16 14 3 1 8 17 12 10] [14 9 16 1 8 3 5 0 7 12 10 17 6 4 2 11 15 13] [17 12 10 4 2 6 8 3 1 15 13 11 0 7 5 14 9 16] [ 5 0 7 14 9 16 1 8 3 11 15 13 12 10 17 6 4 2] [ 8 3 1 17 12 10 4 2 6 14 9 16 15 13 11 0 7 5] [ 2 6 4 11 15 13 7 5 0 17 12 10 9 16 14 3 1 8] [ 4 2 6 8 3 1 17 12 10 0 7 5 14 9 16 15 13 11] [ 7 5 0 2 6 4 11 15 13 3 1 8 17 12 10 9 16 14] [ 1 8 3 5 0 7 14 9 16 6 4 2 11 15 13 12 10 17], [ 0 8 4 14 10 15 11 16 12 9 17 13 7 3 2 5 1 6] [ 5 1 6 16 12 11 13 9 17 14 10 15 0 8 4 7 3 2] [ 7 3 2 9 17 13 15 14 10 16 12 11 5 1 6 0 8 4] [14 10 15 3 2 7 17 13 9 8 4 0 12 11 16 1 6 5] [16 12 11 8 4 0 10 15 14 1 6 5 17 13 9 3 2 7] [ 9 17 13 1 6 5 12 11 16 3 2 7 10 15 14 8 4 0] [11 16 12 17 13 9 6 5 1 4 0 8 2 7 3 15 14 10] [13 9 17 10 15 14 2 7 3 6 5 1 4 0 8 11 16 12] [15 14 10 12 11 16 4 0 8 2 7 3 6 5 1 13 9 17] [ 6 5 1 11 16 12 7 3 2 0 8 4 9 17 13 14 10 15] [ 2 7 3 13 9 17 0 8 4 5 1 6 14 10 15 16 12 11] [ 4 0 8 15 14 10 5 1 6 7 3 2 16 12 11 9 17 13] [ 1 6 5 0 8 4 14 10 15 17 13 9 3 2 7 12 11 16] [ 3 2 7 5 1 6 16 12 11 10 15 14 8 4 0 17 13 9] [ 8 4 0 7 3 2 9 17 13 12 11 16 1 6 5 10 15 14] [17 13 9 4 0 8 3 2 7 15 14 10 11 16 12 6 5 1] [10 15 14 6 5 1 8 4 0 11 16 12 13 9 17 2 7 3] [12 11 16 2 7 3 1 6 5 13 9 17 15 14 10 4 0 8], [ 0 5 7 4 6 2 16 9 14 3 8 1 17 10 12 13 15 11] [ 8 1 3 0 5 7 12 17 10 2 4 6 13 15 11 9 14 16] [ 4 6 2 8 1 3 11 13 15 7 0 5 9 14 16 17 10 12] [10 12 17 3 8 1 7 0 5 16 9 14 6 2 4 11 13 15] [15 11 13 2 4 6 3 8 1 12 17 10 5 7 0 16 9 14] [14 16 9 7 0 5 2 4 6 11 13 15 1 3 8 12 17 10] [ 1 3 8 13 15 11 6 2 4 14 16 9 10 12 17 0 5 7] [ 6 2 4 9 14 16 5 7 0 10 12 17 15 11 13 8 1 3] [ 5 7 0 17 10 12 1 3 8 15 11 13 14 16 9 4 6 2] [ 9 14 16 15 11 13 0 5 7 4 6 2 12 17 10 3 8 1] [17 10 12 14 16 9 8 1 3 0 5 7 11 13 15 2 4 6] [13 15 11 10 12 17 4 6 2 8 1 3 16 9 14 7 0 5] [ 3 8 1 12 17 10 9 14 16 6 2 4 7 0 5 15 11 13] [ 2 4 6 11 13 15 17 10 12 5 7 0 3 8 1 14 16 9] [ 7 0 5 16 9 14 13 15 11 1 3 8 2 4 6 10 12 17] [12 17 10 6 2 4 15 11 13 9 14 16 0 5 7 1 3 8] [11 13 15 5 7 0 14 16 9 17 10 12 8 1 3 6 2 4] [16 9 14 1 3 8 10 12 17 13 15 11 4 6 2 5 7 0], [ 0 2 1 9 11 10 3 5 4 8 7 6 17 16 15 14 13 12] [ 2 1 0 11 10 9 5 4 3 7 6 8 16 15 17 13 12 14] [ 1 0 2 10 9 11 4 3 5 6 8 7 15 17 16 12 14 13] [ 6 8 7 3 5 4 12 14 13 17 16 15 2 1 0 11 10 9] [ 8 7 6 5 4 3 14 13 12 16 15 17 1 0 2 10 9 11] [ 7 6 8 4 3 5 13 12 14 15 17 16 0 2 1 9 11 10] [15 17 16 0 2 1 6 8 7 14 13 12 11 10 9 5 4 3] [17 16 15 2 1 0 8 7 6 13 12 14 10 9 11 4 3 5] [16 15 17 1 0 2 7 6 8 12 14 13 9 11 10 3 5 4] [ 4 3 5 14 13 12 9 11 10 2 1 0 6 8 7 16 15 17] [ 3 5 4 13 12 14 11 10 9 1 0 2 8 7 6 15 17 16] [ 5 4 3 12 14 13 10 9 11 0 2 1 7 6 8 17 16 15] [12 14 13 7 6 8 17 16 15 10 9 11 5 4 3 0 2 1] [14 13 12 6 8 7 16 15 17 9 11 10 4 3 5 2 1 0] [13 12 14 8 7 6 15 17 16 11 10 9 3 5 4 1 0 2] [11 10 9 15 17 16 1 0 2 3 5 4 13 12 14 8 7 6] [10 9 11 17 16 15 0 2 1 5 4 3 12 14 13 7 6 8] [ 9 11 10 16 15 17 2 1 0 4 3 5 14 13 12 6 8 7]2 10 9 11 4 3 5 6 8 7 15 17 16 12 14 13] [ 6 8 7 3 5 4 12 14 13 17 16 15 2 1 0 11 10 9] [ 8 7 6 5 4 3 14 13 12 16 15 17 1 0 2 10 9 11] [ 7 6 8 4 3 5 13 12 14 15 17 16 0 2 1 9 11 10] [15 17 16 0 2 1 6 8 7 14 13 12 11 10 9 5 4 3] [17 16 15 2 1 0 8 7 6 13 12 14 10 9 11 4 3 5] [16 15 17 1 0 2 7 6 8 12 14 13 9 11 10 3 5 4] [ 4 3 5 14 13 12 9 11 10 2 1 0 6 8 7 16 15 17] [ 3 5 4 13 12 14 11 10 9 1 0 2 8 7 6 15 17 16] [ 5 4 3 12 14 13 10 9 11 0 2 1 7 6 8 17 16 15] [12 14 13 7 6 8 17 16 15 10 9 11 5 4 3 0 2 1] [14 13 12 6 8 7 16 15 17 9 11 10 4 3 5 2 1 0] [13 12 14 8 7 6 15 17 16 11 10 9 3 5 4 1 0 2] [11 10 9 15 17 16 1 0 2 3 5 4 13 12 14 8 7 6] [10 9 11 17 16 15 0 2 1 5 4 3 12 14 13 7 6 8] [ 9 11 10 16 15 17 2 1 0 4 3 5 14 13 12 6 8 7][/code] Риз шеÑти ЛК уже не знает группу MOLS 18-го порÑдка [code]NotImplementedError: I don't know how to build 6 MOLS of order 18[/code] Супер! |
Send message Joined: 22 Oct 17 Posts: 3083 Credit: 0 RAC: 0 |
Группу из двух ортогональных ЛК 10-го порÑдка программа знает :) sage: designs.mutually_orthogonal_latin_squares(2,10) [1 8 9 0 2 4 6 3 5 7] [1 7 6 5 0 9 8 2 3 4] [7 2 8 9 0 3 5 4 6 1] [8 2 1 7 6 0 9 3 4 5] [6 1 3 8 9 0 4 5 7 2] [9 8 3 2 1 7 0 4 5 6] [5 7 2 4 8 9 0 6 1 3] [0 9 8 4 3 2 1 5 6 7] [0 6 1 3 5 8 9 7 2 4] [2 0 9 8 5 4 3 6 7 1] [9 0 7 2 4 6 8 1 3 5] [4 3 0 9 8 6 5 7 1 2] [8 9 0 1 3 5 7 2 4 6] [6 5 4 0 9 8 7 1 2 3] [2 3 4 5 6 7 1 8 9 0] [3 4 5 6 7 1 2 8 0 9] [3 4 5 6 7 1 2 0 8 9] [5 6 7 1 2 3 4 0 9 8] [4 5 6 7 1 2 3 9 0 8], [7 1 2 3 4 5 6 9 8 0] Рвот группу MOLS 10-го порÑдка из трёх ЛК не знает :) sage: designs.mutually_orthogonal_latin_squares(3,10) Ответ NotImplementedError: I don't know how to build 3 MOLS of order 10 Я тоже не знаю такую группу :) Её, похоже, пока никто не знает. |
Send message Joined: 22 Oct 17 Posts: 3083 Credit: 0 RAC: 0 |
ÐÑ…, а Ñтроить группы MODLS программа SageMath не умеет :( Задаю команду sage: designs.mutually_orthogonal_diagonal_latin_squares(2,4) Получаю в ответ AttributeError: module 'sage.combinat.designs.design_catalog' has no attribute 'mutually_orthogonal_diagonal_latin_squares' Жаль! Ðадо бы подÑказать разработчикам программы. |
Send message Joined: 22 Oct 17 Posts: 3083 Credit: 0 RAC: 0 |
Ð’ моей Ñтатье "ГРУППЫ ВЗÐИМÐО ОРТОГОÐÐЛЬÐЫХ ЛÐТИÐСКИХ КВÐДРÐТОВ Mutually Orthogonal Latin squares (MOLS)" http://www.natalimak1.narod.ru/grolk.htm приведена ÑÐ»ÐµÐ´ÑƒÑŽÑ‰Ð°Ñ Ñ‚Ð°Ð±Ð»Ð¸Ñ†Ð° n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Q(n) 1 2 3 4 1 6 7 8 2 10 5 12 3 4 15 16 3 18 4 где n - порÑдок ЛК, а Q(n) - макÑимальное количеÑтво (извеÑтное на тот момент) ЛК в группе MOLS порÑдка n. Как видим, результат Ð´Ð»Ñ Ð¿Ð¾Ñ€Ñдка 18 изменилÑÑ, теперь Q(18)=5. Ð¡ÐµÐ¹Ñ‡Ð°Ñ ÐµÑ‰Ñ‘ Ð´Ð»Ñ Ð¿Ð¾Ñ€Ñдка 20 проверю. |
Send message Joined: 22 Oct 17 Posts: 3083 Credit: 0 RAC: 0 |
Задаю команду sage: designs.mutually_orthogonal_latin_squares(4,20) Получаю [20 x 20 dense matrix over Integer Ring, 20 x 20 dense matrix over Integer Ring, 20 x 20 dense matrix over Integer Ring, 20 x 20 dense matrix over Integer Ring] Кольцо! Задаю команду sage: designs.mutually_orthogonal_latin_squares(5,20) Получаю в ответ NotImplementedError: I don't know how to build 5 MOLS of order 20 Ðе знает :) Я тоже не знаю :) |
Send message Joined: 22 Oct 17 Posts: 3083 Credit: 0 RAC: 0 |
Смотрим поÑледовательноÑÑ‚ÑŒ OEIS https://oeis.org/A001438 A001438 Maximal number of mutually orthogonal Latin squares (or MOLS) of order n. ЗдеÑÑŒ приведены Ð·Ð½Ð°Ñ‡ÐµÐ½Ð¸Ñ Q(n) до порÑдка 9 включительно. Ð”Ð»Ñ Ñледующих порÑдков имеем на данный момент Q(10)>=2, Q(11)=10, Q(12)>=5, Q(13)=12, Q(14)>=4, Q(15)>=4, Q(16)=15, Q(17)=16, Q(18)>=5, Q(19)=18, Q(20)>=4. |
Send message Joined: 22 Oct 17 Posts: 3083 Credit: 0 RAC: 0 |
Ð”Ð»Ñ Ð¿Ð¾Ñ€Ñдка 14, кажетÑÑ, ещё не показала группу MOLS. Задаю команду sage: designs.mutually_orthogonal_latin_squares(3,14) Получаю [ 1 9 8 7 6 10 4 2 0 11 13 5 12 3] [ 5 2 10 9 1 7 11 4 3 8 12 0 6 13] [12 6 3 11 10 2 1 0 5 4 9 13 8 7] [ 2 13 7 4 12 11 3 1 8 6 5 10 0 9] [ 4 3 0 1 5 13 12 10 2 9 7 6 11 8] [13 5 4 8 2 6 0 9 11 3 10 1 7 12] [ 8 0 6 5 9 3 7 13 10 12 4 11 2 1] [ 3 11 13 10 4 0 5 8 12 7 2 9 1 6] [ 6 4 12 0 11 5 8 7 9 13 1 3 10 2] [ 9 7 5 13 8 12 6 3 1 10 0 2 4 11] [ 7 10 1 6 0 9 13 12 4 2 11 8 3 5] [ 0 1 11 2 7 8 10 6 13 5 3 12 9 4] [11 8 2 12 3 1 9 5 7 0 6 4 13 10] [10 12 9 3 13 4 2 11 6 1 8 7 5 0], [ 1 5 12 2 4 13 8 3 6 9 7 0 11 10] [ 9 2 6 13 3 5 0 11 4 7 10 1 8 12] [ 8 10 3 7 0 4 6 13 12 5 1 11 2 9] [ 7 9 11 4 1 8 5 10 0 13 6 2 12 3] [ 6 1 10 12 5 2 9 4 11 8 0 7 3 13] [10 7 2 11 13 6 3 0 5 12 9 8 1 4] [ 4 11 1 3 12 0 7 5 8 6 13 10 9 2] [ 2 4 0 1 10 9 13 8 7 3 12 6 5 11] [ 0 3 5 8 2 11 10 12 9 1 4 13 7 6] [11 8 4 6 9 3 12 7 13 10 2 5 0 1] [13 12 9 5 7 10 4 2 1 0 11 3 6 8] [ 5 0 13 10 6 1 11 9 3 2 8 12 4 7] [12 6 8 0 11 7 2 1 10 4 3 9 13 5] [ 3 13 7 9 8 12 1 6 2 11 5 4 10 0], [ 1 2 3 4 5 6 7 8 9 10 11 12 13 0] [ 6 13 10 9 3 12 8 2 11 1 7 0 4 5] [11 8 5 7 1 9 4 12 10 0 13 6 2 3] [ 3 0 11 12 6 13 1 9 4 7 2 5 8 10] [13 9 2 0 4 8 5 7 1 3 6 10 12 11] [12 5 1 10 2 3 11 0 6 13 9 8 7 4] [ 0 4 12 13 7 10 9 3 2 8 5 1 11 6] [ 7 3 13 8 10 1 0 6 12 2 4 11 5 9] [ 2 6 9 5 11 7 13 1 8 4 10 3 0 12] [ 5 10 8 1 12 0 6 4 13 11 3 7 9 2] [ 8 12 7 11 13 4 2 10 3 5 0 9 6 1] [10 11 4 6 0 5 3 13 7 9 12 2 1 8] [ 9 7 0 3 8 2 12 11 5 6 1 4 10 13] [ 4 1 6 2 9 11 10 5 0 12 8 13 3 7] О-о-о! ЕÑÑ‚ÑŒ группа MOLS 14-го порÑдка из 4-Ñ… ЛК [ 1 9 8 7 6 10 4 2 0 11 13 5 12 3] [ 5 2 10 9 1 7 11 4 3 8 12 0 6 13] [12 6 3 11 10 2 1 0 5 4 9 13 8 7] [ 2 13 7 4 12 11 3 1 8 6 5 10 0 9] [ 4 3 0 1 5 13 12 10 2 9 7 6 11 8] [13 5 4 8 2 6 0 9 11 3 10 1 7 12] [ 8 0 6 5 9 3 7 13 10 12 4 11 2 1] [ 3 11 13 10 4 0 5 8 12 7 2 9 1 6] [ 6 4 12 0 11 5 8 7 9 13 1 3 10 2] [ 9 7 5 13 8 12 6 3 1 10 0 2 4 11] [ 7 10 1 6 0 9 13 12 4 2 11 8 3 5] [ 0 1 11 2 7 8 10 6 13 5 3 12 9 4] [11 8 2 12 3 1 9 5 7 0 6 4 13 10] [10 12 9 3 13 4 2 11 6 1 8 7 5 0], [ 1 5 12 2 4 13 8 3 6 9 7 0 11 10] [ 9 2 6 13 3 5 0 11 4 7 10 1 8 12] [ 8 10 3 7 0 4 6 13 12 5 1 11 2 9] [ 7 9 11 4 1 8 5 10 0 13 6 2 12 3] [ 6 1 10 12 5 2 9 4 11 8 0 7 3 13] [10 7 2 11 13 6 3 0 5 12 9 8 1 4] [ 4 11 1 3 12 0 7 5 8 6 13 10 9 2] [ 2 4 0 1 10 9 13 8 7 3 12 6 5 11] [ 0 3 5 8 2 11 10 12 9 1 4 13 7 6] [11 8 4 6 9 3 12 7 13 10 2 5 0 1] [13 12 9 5 7 10 4 2 1 0 11 3 6 8] [ 5 0 13 10 6 1 11 9 3 2 8 12 4 7] [12 6 8 0 11 7 2 1 10 4 3 9 13 5] [ 3 13 7 9 8 12 1 6 2 11 5 4 10 0], [ 1 2 3 4 5 6 7 8 9 10 11 12 13 0] [ 6 13 10 9 3 12 8 2 11 1 7 0 4 5] [11 8 5 7 1 9 4 12 10 0 13 6 2 3] [ 3 0 11 12 6 13 1 9 4 7 2 5 8 10] [13 9 2 0 4 8 5 7 1 3 6 10 12 11] [12 5 1 10 2 3 11 0 6 13 9 8 7 4] [ 0 4 12 13 7 10 9 3 2 8 5 1 11 6] [ 7 3 13 8 10 1 0 6 12 2 4 11 5 9] [ 2 6 9 5 11 7 13 1 8 4 10 3 0 12] [ 5 10 8 1 12 0 6 4 13 11 3 7 9 2] [ 8 12 7 11 13 4 2 10 3 5 0 9 6 1] [10 11 4 6 0 5 3 13 7 9 12 2 1 8] [ 9 7 0 3 8 2 12 11 5 6 1 4 10 13] [ 4 1 6 2 9 11 10 5 0 12 8 13 3 7], [ 1 2 3 4 5 6 7 8 9 10 11 12 13 0] [ 9 5 11 7 13 10 0 4 2 12 6 3 8 1] [ 4 12 10 3 9 1 6 5 13 11 8 0 7 2] [ 0 13 8 6 7 12 5 11 10 1 3 2 4 9] [10 4 1 2 0 9 8 12 3 6 5 7 11 13] [ 2 6 13 5 11 4 12 1 8 7 0 10 9 3] [ 8 11 0 1 10 3 13 7 5 2 9 4 6 12] [11 9 6 13 8 7 4 2 1 0 12 5 3 10] [13 3 12 0 1 2 9 6 11 5 4 8 10 7] [12 1 7 8 4 5 11 9 0 3 10 13 2 6] [ 3 8 5 9 2 13 10 0 12 4 7 6 1 11] [ 6 7 2 10 12 11 1 3 4 8 13 9 0 5] [ 5 0 9 11 6 8 3 10 7 13 2 1 12 4] [ 7 10 4 12 3 0 2 13 6 9 1 11 5 8] Рвот из 5 ЛК пока нет. NotImplementedError: I don't know how to build 5 MOLS of order 14 |
Send message Joined: 22 Oct 17 Posts: 3083 Credit: 0 RAC: 0 |
Ð”Ð»Ñ Ð¿Ð¾Ñ€Ñдка 21 sage: designs.mutually_orthogonal_latin_squares(5,21) Получаю [21 x 21 dense matrix over Integer Ring, 21 x 21 dense matrix over Integer Ring, 21 x 21 dense matrix over Integer Ring, 21 x 21 dense matrix over Integer Ring, 21 x 21 dense matrix over Integer Ring] Кольцо! Группа MOLS 21-го порÑдка из 6 ЛК пока неизвеÑтна NotImplementedError: I don't know how to build 6 MOLS of order 21 |
Send message Joined: 22 Oct 17 Posts: 3083 Credit: 0 RAC: 0 |
Задаю команду sage: designs.mutually_orthogonal_latin_squares(3,22) Получаю [22 x 22 dense matrix over Integer Ring, 22 x 22 dense matrix over Integer Ring, 22 x 22 dense matrix over Integer Ring] Кольцо! Задаю команду sage: designs.mutually_orthogonal_latin_squares(4,22) Получаю NotImplementedError: I don't know how to build 4 MOLS of order 22 |
Send message Joined: 22 Oct 17 Posts: 3083 Credit: 0 RAC: 0 |
Задаю команду sage: designs.mutually_orthogonal_latin_squares(7,24) Получаю [24 x 24 dense matrix over Integer Ring, 24 x 24 dense matrix over Integer Ring, 24 x 24 dense matrix over Integer Ring, 24 x 24 dense matrix over Integer Ring, 24 x 24 dense matrix over Integer Ring, 24 x 24 dense matrix over Integer Ring, 24 x 24 dense matrix over Integer Ring] Кольцо! Задаю команду sage: designs.mutually_orthogonal_latin_squares(8,24) получаю NotImplementedError: I don't know how to build 8 MOLS of order 24 |
Send message Joined: 22 Oct 17 Posts: 3083 Credit: 0 RAC: 0 |
Задаю команду sage: designs.mutually_orthogonal_latin_squares(4,26) Получаю [26 x 26 dense matrix over Integer Ring, 26 x 26 dense matrix over Integer Ring, 26 x 26 dense matrix over Integer Ring, 26 x 26 dense matrix over Integer Ring] Кольцо! Задаю команду sage: designs.mutually_orthogonal_latin_squares(5,26) получаю NotImplementedError: I don't know how to build 5 MOLS of order 26 |
Send message Joined: 22 Oct 17 Posts: 3083 Credit: 0 RAC: 0 |
Задаю команду sage: designs.mutually_orthogonal_latin_squares(5,28) получаю [28 x 28 dense matrix over Integer Ring, 28 x 28 dense matrix over Integer Ring, 28 x 28 dense matrix over Integer Ring, 28 x 28 dense matrix over Integer Ring, 28 x 28 dense matrix over Integer Ring] Кольцо! Задаю команду sage: designs.mutually_orthogonal_latin_squares(6,28) получаю NotImplementedError: I don't know how to build 6 MOLS of order 28 |
Send message Joined: 22 Oct 17 Posts: 3083 Credit: 0 RAC: 0 |
Ðу, и ещё Ð´Ð»Ñ Ð¿Ð¾Ñ€Ñдка 30. Задаю команду sage: designs.mutually_orthogonal_latin_squares(4,30) получаю [30 x 30 dense matrix over Integer Ring, 30 x 30 dense matrix over Integer Ring, 30 x 30 dense matrix over Integer Ring, 30 x 30 dense matrix over Integer Ring] Кольцо! Задаю команду sage: designs.mutually_orthogonal_latin_squares(5,30) получаю NotImplementedError: I don't know how to build 5 MOLS of order 30 Пока хватит :) ХотелоÑÑŒ бы узнать, что такое "dense matrix over Integer Ring", что Гугл переводит так "Ð¿Ð»Ð¾Ñ‚Ð½Ð°Ñ Ð¼Ð°Ñ‚Ñ€Ð¸Ñ†Ð° над целым кольцом". И как Ñти квадратики получить, ежели они ÑущеÑтвуют? |
Send message Joined: 22 Oct 17 Posts: 3083 Credit: 0 RAC: 0 |
Проверка вÑех ЛК полной ÑиÑтемы MOLS 27-го порÑдка программой Harry White GetOrthogonal Order? 27 Enter the name of the squares file: inp ..output file inpPairs.txt ..output file inpPairNos.txt squares 26 orthogonal pairs 325 Ð’ÑÑ‘ в порÑдке: ЛК образуют 325 ортогональных пар. |
©2024 ©2024 Progger & Stefano Tognon (ice00) & Reese